Chapter

Amino-Acids \& Proteins

(Session -3)

Topics Covered in this Lecture

1 Amino acids and Proteins
2 Classification of Amino Acids
3 Zwitter Ion and Isoelectric point
4 Peptide linkage and Sequencing
5 Structure of Proteins

Structures common to all amino acids

Amino Acids

S.K.Sinha

Amino acidd A compound that contains both an amino group and a carboxyl group. α-Amino acicls An amino acid in which the amino group is on the carbon adjacent to the carboxyl group.
although α-amino acids are commonly written in the unionized form, they are more properly written in the ewitterion (internal salt) form.

α-Amino Acid
Zwitterion
form

Anatomy of an amino acid

General amino acid structure
Chemical anatomy of an amino acid

Anatomy of an amino acid

20 different amino acids occur in living cells. 4 chemical groups (composition of the \mathbf{R} group):

- Acidic (negatively charged), $(\boldsymbol{n}=2)$
- Basic (positively charged), ($n=3$)
- Neutral and polar, hydrophilic, ($n=6$)
- Neutral and non-polar, hydrophobic, ($n=9$)

No. of Carbon

Glutamic 2 (Carboxylic)
Glutamine
Lysine
Arginine
Threonine
Methionine
Glycine
2 (Carboamide)
4 (Amine)
3 (Gua)
2 (OH)
2 (SMe)
All other
0
1.

Glycine

Acyclic HC.

Glycine
Gly G
1. Hydrogen

Alanine

Valine

Valine
Val V 1. Isopropyl

Leucine

Iso-Ieucine

Proline

PhenyIAlanine

Phenylalanine $\begin{array}{ll}\text { Phe F } & \begin{array}{l}\text { 1. Methyl } \\ \text { 2. Benzene }\end{array}\end{array}$

Tyrosine

Tyrosine
$\begin{array}{ll}\text { Tyr } Y & \begin{array}{l}\text { 1. Methyl } \\ \text { 2. p-Phenol }\end{array}\end{array}$

Tryptophan

Aromatic

Tryptophan

Trp W 1. Methyl
2. 3-Indole

Serine

Serine 1. Methyl Ser S

Threonine

Threonine
Thr T $\begin{gathered}\text { 1. Ethyy } \\ \text { 2. } 1 \text {-Hydroxy }\end{gathered}$

Cysteine

Cysteine
 Cys C

1. Methyl
2. Thiol

Methionine

Sulphur

Methionine

 Met M1. Ethyl
2. Methylthio

Aspartic acid

Acidic

Aspartic Acid
Asp D 1. Methyl
2. Carboxylic acid

Glutamic acid

Glutamic Acid
Glu E $\quad \begin{aligned} & \text { 1. Ethyl } \\ & \text { 2. Carboxylic Acid }\end{aligned}$

Asparagine

Asparagine ${ }^{\text {2. Carboxamide }}$
Asn N

Glutamine

Glutamine Gln Q

1. Ethyl
2. Carboxamide

Lysine

Basic

Lysine

1. Butyl

Lys K
2. Amine

Arginine

Arginine 1. Propyl
Arg R
2. Guanadine

Histidine

Basic

Histidine His H

1. Methyl
2. Imidazole

No. of Carbon

Glutamic 2 (Carboxylic)
Glutamine
Lysine
Arginine
Threonine
Methionine
Glycine
2 (Carboamide)
4 (Amine)
3 (Gua)
2 (OH)
2 (SMe)
All other
0
1.

Nonpolar, aliphatic R groups

Proline

Leucine
Isoleucine

Valine

Methionine

The 20 Amino Acids Polar, uncharged R groups

Serine

Threonine

Asparagine

Cysteine

Glutamine

The 20 Amino Acids Aromatic \mathbf{R} groups

Phenylalanine Tyrosine
Tryptophan

Negatively charged R groups

Aspartate
Glutamate

The 20 Amino Acids

Positively charged \mathbf{R} groups

Lysine

Arginine

Histidine

Essential amino acids
 S.K.silina

Eight amino acids are generally regarded as essential for humans:
A good memonic device for remembering these is "Private Tim Hall", abbreviated as: PVT TIM HALL:
Phenylalanine, Valine,
Tryptophan, Threonine, Isoleucine, Methionine, Histidine, Arginine, Lysine, Leucine

Essential amino acids
 ง.K.silha

Eight amino acids are generally regarded as essential for humans:
A good memonic device for remembering these is "Private Tim Hall", abbreviated as: PVT TIM HALL:
Valine, Leucine Isoleucine,
Phenylalanine(Ph), Tryptophan(Ph),
Threonine(OH), Methionine(s),
Lysine(B), Arginine(B),
Histidine(B),

Stereochemistry

Stereoisomers

(a) L-Alanine

(b) L-Alanine

(c) L-Alanine

D-Alanine
COO^{-}

d-Alanine

D-Alanine

All amino acids in proteins are L-amino acids, except for glycine, which is achiral.

Non-polar amino acids

Glycine (Gly, G)

Proline (Pro, P)

Leucine (Leu, L)

Alanine (Ala, A)

Phenylalanine (Phe, F)
Methionine (Met, M)

Tryptophan (Trp, W)

Isoleucine (Ile, I)

Polar, non-charged amino acids

Serine (Ser, S)

Cysteine (Cys, C)

Threonine (Thr, T)

Tyrosine (Tyr, Y)

Asparagine (Asn, N)

Glutamine (Gln, Q)

Acidic amino acids

Aspartate (Asp, D)

Glutamate (Glu, E)

Basic amino acids

Lysine (Lys, K)

Arginine (Arg, R)

Histidine (His, H)
(protonated form)

Aromatic amino acids

To different degrees, all aromatic amino acids absorb ultraviolet light.
Tryptophan is responsible for most of the absorbance of ultraviolet light (ca. 280 nm) by proteins. Tyrosine and tryptophan absorb more than do phenylalanine; Tyrosine is the only one of the aromatic amino acids with an ionizable side chain. Tyrosine is one of three hydroxyl containing amino acids.

Isoelectricspoint

Isoelectric point (pl): pH at which an amino acid, polypeptide, or protein has a total charge of zero.
The pl for glycine, for example, falls between the $\mathrm{p} K_{\mathrm{a}}$ values for the carboxyl and amino groups.

$$
\begin{aligned}
\mathrm{pI} & =\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a}} \alpha-\mathrm{COOH}+\mathrm{p} K_{\mathrm{a}} \alpha-\mathrm{NH}_{3}{ }^{+}\right) \\
& =\frac{1}{2}(2.35+9.78)=6.06
\end{aligned}
$$

Isoelectric Point of glycine continued

Again

$$
\begin{aligned}
\mathrm{pI} & =\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a}} \alpha-\mathrm{COOH}+\mathrm{p} K_{\mathrm{a}} \alpha-\mathrm{NH}_{3}{ }^{+}\right) \\
& =\frac{1}{2}(2.35+9.78)=6.06
\end{aligned}
$$

Isoelectric ${ }^{\text {BV Point }}$

pH increases

$\mathrm{pK}_{\mathrm{a}} \quad 2.35$
9.78
$\underset{\substack{\left.\mathrm{pI} \\\left[A^{\prime}\right]\\\right]}}{ }=[\mathrm{c}-\mathrm{]}$

Isoelectric ${ }^{\text {PP}}$ Point

$\left.\begin{array}{lcccc}\text { Acidic } & \mathrm{p} K_{\mathrm{a}} \text { of } & \mathrm{p} K_{\mathrm{a}} \text { of } \\ \text { Side Ch ains } & \alpha-\mathrm{COOH} & \alpha-\mathrm{NH}_{3}\end{array}{ }^{+} \begin{array}{l}\mathrm{p} K_{\mathrm{a}} \text { of } \\ \text { Side } \\ \text { Chain }\end{array}\right]$

Isoelectric Point

Amino acid	Abbrev.	pl	pK1 $(\alpha-\mathrm{COOH})$	pK2 $(\alpha-+\mathrm{NH} 3)$
Alanine	Ala	6.01	2.35	9.87
Cysteine	Cys	5.05	1.92	10.7
Aspartic acid	Asp	2.85	1.99	9.9
Glutamic acid	Glu	3.15	2.1	9.47
Phenylalanine	Phe	5.49	2.2	9.31
Glycine	Gly	6.06	2.35	9.78
Histidine	His	7.6	1.8	9.33
Isoleucine	Ile	6.05	2.32	9.76

Isoelectric Point

Amino acid	Abbrev.	pl	pK1 $(\alpha-\mathrm{COOH})$	pK2 $(\alpha-+\mathrm{NH} 3)$
Lysine	Lys	9.6	2.16	9.06
Leucine	Leu	6.01	2.33	9.74
Methionine	Met	5.74	2.13	9.28
Asparagine	Asn	5.41	2.14	8.72
Proline	Pro	6.3	1.95	10.64
Glutamine	Gln	5.65	2.17	9.13
Arginine	Arg	10.76	1.82	8.99

Isoelectric Point

Amino acid	Abbrev.	pl	pK1 $(\alpha-\mathrm{COOH})$	pK2 $(\alpha-+\mathrm{NH} 3)$
Serine	Ser	5.68	2.19	9.21
Threonine	Thr	5.6	2.09	9.1
Valine	Val	6	2.39	9.74
Tryptophan	Trp	5.89	2.46	9.41
Tyrosine	Tyr	5.64	2.2	9.21

Asparticnacid

B

2.10

$\mathbf{p K}_{\mathbf{a}}$	2.10	
$\mathbf{p H}=\mathbf{p K}_{\mathbf{a}}$		3.86
$\left[A^{+}\right]=[B]$		

$$
\begin{aligned}
& \mathrm{pl}=(2.10+3.86) / 2 \\
& {\left[\mathrm{~A}^{+}\right]=[C-]} \\
& {\left[\mathrm{D}^{2-}\right] \text { approx } 0}
\end{aligned}
$$

D ${ }^{2-}$

9.82

Note species B has zero net charge. $\mathrm{pK}_{\mathrm{a}} 1$ and $\mathrm{pK}_{\mathrm{a}} 2$ control [A^{+}] and [C-] which should be equal.

$\mathrm{pl}=(9.04+12.48) / 2=10.76$
$\left[B^{+}\right]=\left[D^{-}\right] ; \quad\left[A^{2+}\right]$ about 0

Electrophoresis: The process of separating compounds on the basis of their electric charge. Electrophoresis of amino acids can be carried out using paper, starch, polyacrylamide and agarose gels, and cellulose acetate as solid supports.

Ninhydrin

The reagent commonly used to detect amino acid is ninhydrin.

General protein pK' values

> Group
> α-carboxyl (free)
> β-carboxyl (Asp)
> γ-carboxyl (Glu)
> imidazole (His)
> sulfhydryl (Cys)
> $1^{\circ} \alpha$-amino (free)
> ε-amino (Lys)
> hydroxyl (Tyr)
> $2^{\circ} \alpha$-amino (Pro)
> guanido (Arg)

Approximate pK'
In a "Typical" Protein
3 (C-terminal only)
4
4
6
8
8 (N-terminal only)
10
10
9 (N-terminal only) 12

Levels of Protein Structure
 s.K.Sinha

$\begin{array}{cc}\text { Primary } & \begin{array}{c}\text { Secondary } \\ \text { structure }\end{array} \\ \text { structure }\end{array}$

Amino acid residues
α Helix

Tertiary structure

Quaternary structure

Polypeptide chain

Levels of Protein Structure

Proteins show 4 levels of structural organisation:
1.Primary structure $=$ amino acid sequence

- Determined by the genetic code of the mRNA.

2. Secondary structure $=$ folding and twisting of a single polypeptide chain.

- Result of weak H-bond and electrostatic interactions.
- e.g., α-helix (coiled) and β-pleated sheet (zig-zag).

Levels of Protein Structure

3. Tertiary structure $=$ three dimensional shape (or conformation) of a polypeptide chain.

- Function of \mathbf{R} groups contained in the polypeptide.

4. Quaternary structure $=$ association between polypeptides in multi-subunit proteins (e.g. hemoglobin).

- Occurs only with two or more polypeptides.

Peptide Bonds

- α-carboxyl of one amino acid is joined to $\alpha-$ amino of a second amino acid (with removal of water)
- only α-carboxyl and α-amino groups are used, not R-group carboxyl or amino groups.

Peptide bond formation

$\mathrm{H}_{2} \mathrm{O} \xrightarrow{ } \xrightarrow{\longrightarrow} \mathrm{H}_{2} \mathrm{O}$

The peptide bond is planar

This resonance restricts the number of conformations in proteins -- main chain rotations are restricted to ϕ and ψ.

In 1902, Emil Fischer proposed that proteins are long chains of amino acids joined by amide bonds to which he gave the name peptide bonds. Peptide bonds The special name given to the amide bond between the α carboxyl group of one amino acid and the α-amino group of another.

Serinylalanine (Ser-Ala)

Serine (Ser, S)

Alanine
(Ala, A)

Serinylalanine
(Ser-Ala, (S-A)

Peptide: The name given to a short polymer of amino acids joined by peptide bonds; they are classified by the number of amino acids in the chain.
Dipeptide: A molecule containing two amino acids joined by a peptide bond.

Tripeptide: A molecule containing three amino acids joined by peptide bonds.

Polypeptide: A macromolecule containing many amino acids joined by peptide bonds.

Protein: A biological macromolecule of molecular weight $5000 \mathrm{~g} / \mathrm{mol}$ or greater, consisting of one or more polypeptide chains.

Writing Peptides

By convention, peptides are written
from the left, beginning with the free -
$\mathrm{NH}_{3}{ }^{+}$group and ending with the free -
COO^{-}group on the right.

THANK YOU for WATCHING

Do SHARE your FEEDBACK With US

